Asymptotic normality of Laplacian coefficients of graphs
نویسندگان
چکیده
منابع مشابه
On the Laplacian coefficients of bicyclic graphs
In this paper, we investigate how the Laplacian coefficients changed after some graph transformations. So, I express some results about Laplacian coefficients ordering of graphs, focusing our attention to the bicyclic graphs. Finally, as an application of these results, we discuss the ordering of graphs based on their Laplacian like energy.
متن کاملOn the Laplacian Coefficients of Acyclic Graphs
Let G be a graph of order n and let Λ(G, λ) = ∑n k=0(−1)ckλ be the characteristic polynomial of its Laplacian matrix. Zhou and Gutman recently proved that among all trees of order n, the kth coefficient ck is largest when the tree is a path, and is smallest for stars. A new proof and a strengthening of this result is provided. A relation to the Wiener index is discussed.
متن کاملSeidel Signless Laplacian Energy of Graphs
Let $S(G)$ be the Seidel matrix of a graph $G$ of order $n$ and let $D_S(G)=diag(n-1-2d_1, n-1-2d_2,ldots, n-1-2d_n)$ be the diagonal matrix with $d_i$ denoting the degree of a vertex $v_i$ in $G$. The Seidel Laplacian matrix of $G$ is defined as $SL(G)=D_S(G)-S(G)$ and the Seidel signless Laplacian matrix as $SL^+(G)=D_S(G)+S(G)$. The Seidel signless Laplacian energy $E_{SL^+...
متن کاملASYMPTOTIC NORMALITY OF THE k-CORE IN RANDOM GRAPHS
We study the k-core of a random (multi)graph on n vertices with a given degree sequence. In our previous paper [18] we used properties of empirical distributions of independent random variables to give a simple proof of the fact that the size of the giant k-core obeys a law of large numbers as n → ∞. Here we develop the method further and show that the fluctuations around the deterministic limi...
متن کاملAsymptotic Normality of the K - Core in Random Graphs 3
We study the k-core of a random (multi)graph on n vertices with a given degree sequence. In our previous paper [Random Structures Algorithms 30 (2007) 50–62] we used properties of empirical distributions of independent random variables to give a simple proof of the fact that the size of the giant k-core obeys a law of large numbers as n →∞. Here we develop the method further and show that the f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2017
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2017.06.052